Glivenko-Cantelli Theorem
Get Glivenko%E2%80%93Cantelli Theorem essential facts below. View Videos or join the Glivenko%E2%80%93Cantelli Theorem discussion. Add Glivenko%E2%80%93Cantelli Theorem to your topic list for future reference or share this resource on social media.
Glivenko%E2%80%93Cantelli Theorem

In the theory of probability, the Glivenko-Cantelli theorem, named after Valery Ivanovich Glivenko and Francesco Paolo Cantelli, determines the asymptotic behaviour of the empirical distribution function as the number of independent and identically distributed observations grows.[1] The uniform convergence of more general empirical measures becomes an important property of the Glivenko-Cantelli classes of functions or sets.[2] The Glivenko-Cantelli classes arise in Vapnik-Chervonenkis theory, with applications to machine learning. Applications can be found in econometrics making use of M-estimators.

Assume that are independent and identically-distributed random variables in with common cumulative distribution function . The empirical distribution function for is defined by

where is the indicator function of the set . For every (fixed) , is a sequence of random variables which converge to almost surely by the strong law of large numbers, that is, converges to pointwise. Glivenko and Cantelli strengthened this result by proving uniform convergence of to .


almost surely.[3]

This theorem originates with Valery Glivenko,[4] and Francesco Cantelli,[5] in 1933.



For simplicity, consider a case of continuous random variable . Fix such that for . Now for all there exists such that . Note that

Therefore, almost surely

Since by strong law of large numbers, we can guarantee that for any integer we can find such that for all


which is the definition of almost sure convergence.

Empirical measures

One can generalize the empirical distribution function by replacing the set by an arbitrary set C from a class of sets to obtain an empirical measure indexed by sets

Where is the indicator function of each set .

Further generalization is the map induced by on measurable real-valued functions f, which is given by

Then it becomes an important property of these classes that the strong law of large numbers holds uniformly on or .

Glivenko-Cantelli class

Consider a set with a sigma algebra of Borel subsets A and a probability measure P. For a class of subsets,

and a class of functions

define random variables

where is the empirical measure, is the corresponding map, and

, assuming that it exists.


  • A class is called a Glivenko-Cantelli class (or GC class) with respect to a probability measure P if any of the following equivalent statements is true.
1. almost surely as .
2. in probability as .
3. , as (convergence in mean).
The Glivenko-Cantelli classes of functions are defined similarly.
  • A class is called a universal Glivenko-Cantelli class if it is a GC class with respect to any probability measure P on (S,A).
  • A class is called uniformly Glivenko-Cantelli if the convergence occurs uniformly over all probability measures P on (S,A):

Theorem (Vapnik and Chervonenkis, 1968)[7]

A class of sets is uniformly GC if and only if it is a Vapnik-Chervonenkis class.


  • Let and . The classical Glivenko-Cantelli theorem implies that this class is a universal GC class. Furthermore, by Kolmogorov's theorem,
, that is is uniformly Glivenko-Cantelli class.
  • Let P be a nonatomic probability measure on S and be a class of all finite subsets in S. Because , , , we have that and so is not a GC class with respect to P.

See also


  1. ^ Howard G.Tucker (1959). "A Generalization of the Glivenko-Cantelli Theorem". The Annals of Mathematical Statistics. 30: 828-830. doi:10.1214/aoms/1177706212.
  2. ^ van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge University Press. p. 279. ISBN 0-521-78450-6.
  3. ^ van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge University Press. p. 265. ISBN 0-521-78450-6.
  4. ^ Glivenko, V. (1933). Sulla determinazione empirica delle leggi di probabilità. Giorn. Ist. Ital. Attuari 4, 92-99.
  5. ^ Cantelli, F. P. (1933). Sulla determinazione empirica delle leggi di probabilità. Giorn. Ist. Ital. Attuari 4, 421-424.
  6. ^ van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge University Press. p. 268. ISBN 0-521-78450-6.
  7. ^ Vapnik, V. N.; Chervonenkis, A. Ya (1971). "On uniform convergence of the frequencies of events to their probabilities". Theor. Prob. Appl. 16 (2): 264-280. doi:10.1137/1116025.

Further reading

  This article uses material from the Wikipedia page available here. It is released under the Creative Commons Attribution-Share-Alike License 3.0.



Top US Cities was developed using's knowledge management platform. It allows users to manage learning and research. Visit defaultLogic's other partner sites below: : Music Genres | Musicians | Musical Instruments | Music Industry