Kravchuk Polynomials
Get Kravchuk Polynomials essential facts below. View Videos or join the Kravchuk Polynomials discussion. Add Kravchuk Polynomials to your Like2do.com topic list for future reference or share this resource on social media.
Kravchuk Polynomials

Kravchuk polynomials or Krawtchouk polynomials (also written using several other transliterations of the Ukrainian name "") are discrete orthogonal polynomials associated with the binomial distribution, introduced by Mikhail Kravchuk (1929). The first few polynomials are (for q=2):

• ${\displaystyle {\mathcal {K}}_{0}(x;n)=1}$
• ${\displaystyle {\mathcal {K}}_{1}(x;n)=-2x+n}$
• ${\displaystyle {\mathcal {K}}_{2}(x;n)=2x^{2}-2nx+{n \choose 2}}$
• ${\displaystyle {\mathcal {K}}_{3}(x;n)=-{\frac {4}{3}}x^{3}+2nx^{2}-(n^{2}-n+{\frac {2}{3}})x+{n \choose 3}.}$

The Kravchuk polynomials are a special case of the Meixner polynomials of the first kind.

## Definition

For any prime power q and positive integer n, define the Kravchuk polynomial

${\displaystyle {\mathcal {K}}_{k}(x;n,q)={\mathcal {K}}_{k}(x)=\sum _{j=0}^{k}(-1)^{j}(q-1)^{k-j}{\binom {x}{j}}{\binom {n-x}{k-j}},\quad k=0,1,\ldots ,n.}$

## Properties

The Kravchuk polynomial has the following alternative expressions:

${\displaystyle {\mathcal {K}}_{k}(x;n,q)=\sum _{j=0}^{k}(-q)^{j}(q-1)^{k-j}{\binom {n-j}{k-j}}{\binom {x}{j}}.}$
${\displaystyle {\mathcal {K}}_{k}(x;n,q)=\sum _{j=0}^{k}(-1)^{j}q^{k-j}{\binom {n-k+j}{j}}{\binom {n-x}{k-j}}.}$

### Symmetry relations

For integers ${\displaystyle i,k\geq 0}$, we have that

{\displaystyle {\begin{aligned}(q-1)^{i}{n \choose i}{\mathcal {K}}_{k}(i;n,q)=(q-1)^{k}{n \choose k}{\mathcal {K}}_{i}(k;n,q).\end{aligned}}}

### Orthogonality relations

For non-negative integers r, s,

${\displaystyle \sum _{i=0}^{n}{\binom {n}{i}}(q-1)^{i}{\mathcal {K}}_{r}(i;n,q){\mathcal {K}}_{s}(i;n,q)=q^{n}(q-1)^{r}{\binom {n}{r}}\delta _{r,s}.}$

### Generating function

The generating series of Kravchuk polynomials is given as below. Here ${\displaystyle z}$ is a formal variable.

{\displaystyle {\begin{aligned}(1+(q-1)z)^{n-x}(1-z)^{x}&=\sum _{k=0}^{\infty }{\mathcal {K}}_{k}(x;n,q){z^{k}}.\end{aligned}}}

## References

• Kravchuk, M. (1929), "Sur une généralisation des polynomes d'Hermite.", Comptes Rendus Mathématique (in French), 189: 620-622, JFM 55.0799.01
• Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Hahn Class: Definitions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W., NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0521192255, MR 2723248
• Nikiforov, A. F.; Suslov, S. K.; Uvarov, V. B. (1991), Classical Orthogonal Polynomials of a Discrete Variable, Springer Series in Computational Physics, Berlin: Springer-Verlag, ISBN 3-540-51123-7, MR 1149380.
• Levenshtein, Vladimir I. (1995), "Krawtchouk polynomials and universal bounds for codes and designs in Hamming spaces", IEEE Transactions on Information Theory, 41 (5): 1303-1321, doi:10.1109/18.412678, MR 1366326.
• MacWilliams, F. J.; Sloane, N. J. A. (1977), The Theory of Error-Correcting Codes, North-Holland, ISBN 0-444-85193-3